Amateur Radio Astronomy

Projet ART

Awesome Radio Telescope

Ruben Barbosa 2016

How to explore the Universe?

The search for ET life follows 3 main directions:

- 1. looking for primitive life (bacteria) \rightarrow the solar system, by sending automated interplanetary probes,
- biomarker detection (ozone) → in exoplanets similar to Earth located in habitable zones and
- complex life demand (iET) → forms of life with technology similar to ours, by SETI

The rise of ART Project

NASA/SETI/JPL

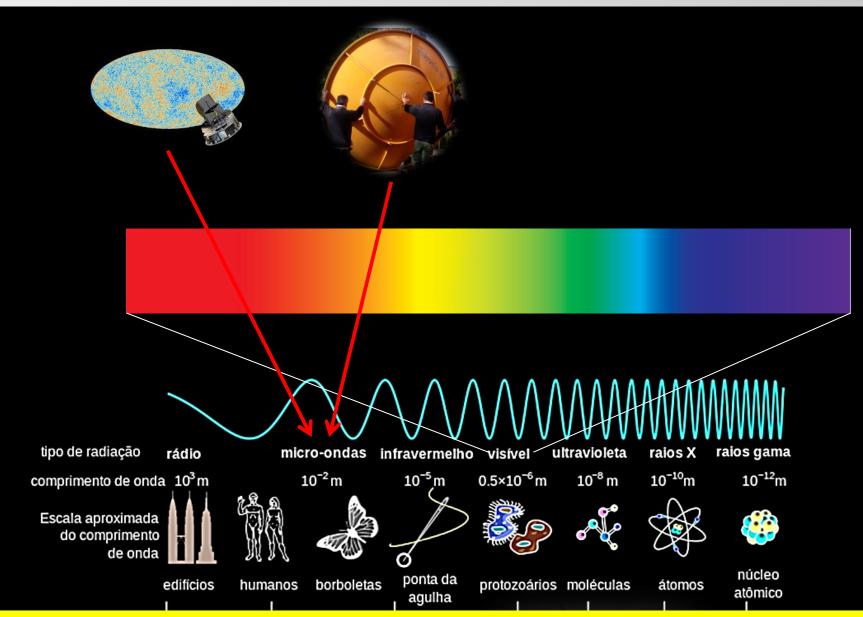
1. Fundamentals of Radio Astronomy

Search ot

ET Vie

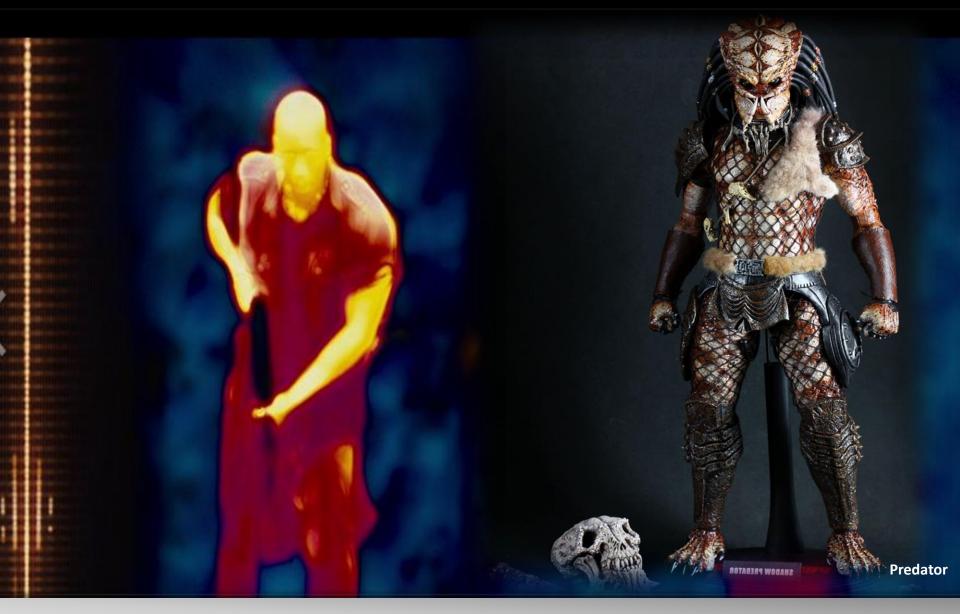
Radio

astronomy


2. ARA – ART Project

3. Intelligent extraterrestrial life

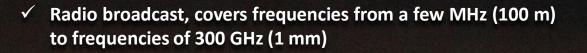
ART Project - OAPBG


Exoplanets

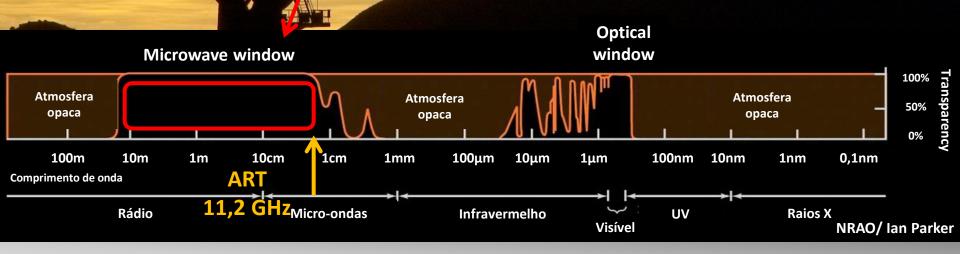
The electromagnetic spectrum

Fundamentals of Radio Astronomy

Thermal Imaging



If our eyes were sensitive to radio ...

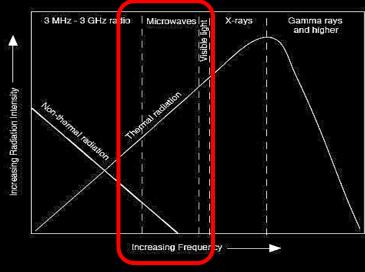

- ✓ The sky was black with cosmic background radiation
- ✓ There would be no stars visible
- ✓ Day and night have the same appearance
- ✓ Our Sun would be a very bright disk
- The moon would appear as a homogeneous disk, without craters
- At 21 cm would observe the Milky Way as a band across the sky

false colors

Microwave window

- Microwave window 1 GHz to 10 GHz (30 cm to 3 cm), characterized by low background noise
- Minimum frequency limit is caused by the strong absorption in the atmosphere of the elements: O₂, CO₂, H₂O
 - Maximum frequency limit is due to the opacity of the ionosphere

Emission sources

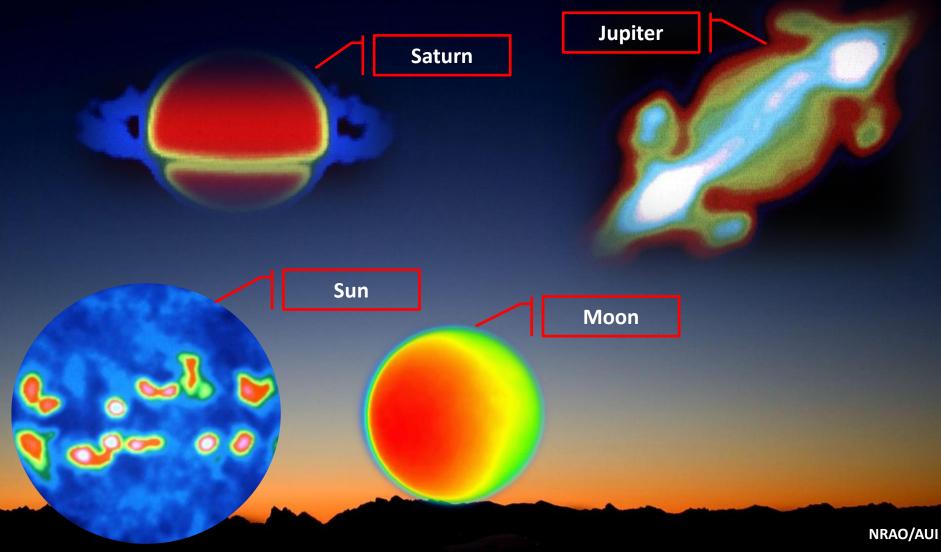

✓ Thermal radiation:

- Black body: temperature of the planets
- ✓ Bremsstrahlung (free-free): HII in M42.
- Spectral Ringer HI 21cm in the Milky Way

Non-thermal radiation:

 Synchrotron: magnetic fields in pulsars, supernovas, radio galaxies

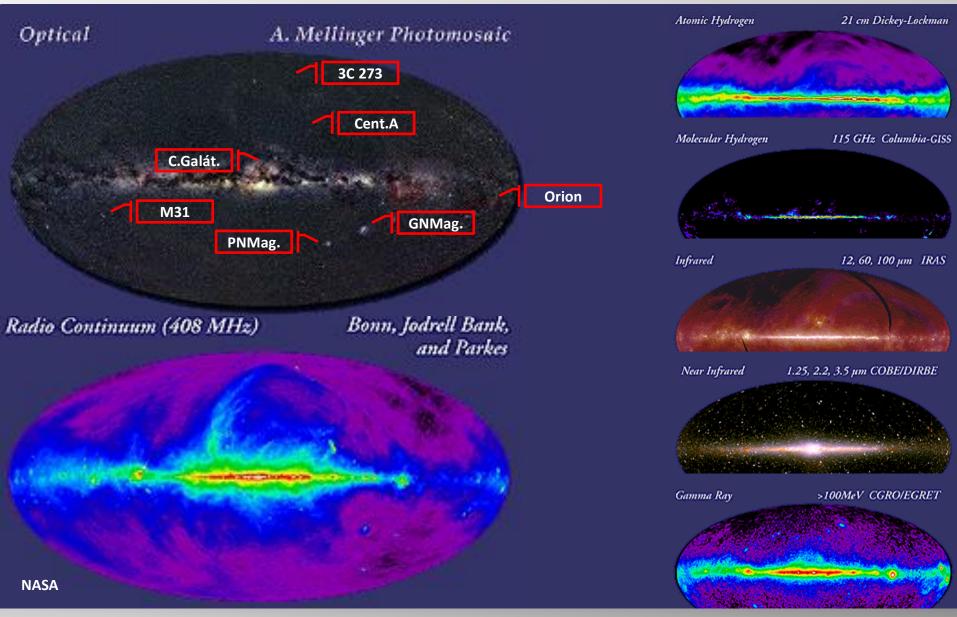
Spectral distribution of general energy



Bremsstralung (free-free): HII in M42

Solar System radio

The universe changes when seen in band radio ...

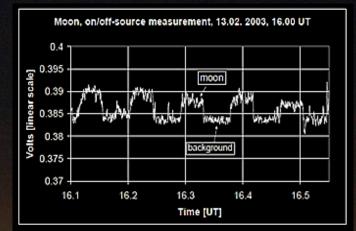

Radio galaxy Cygnus A

\checkmark	Telescope	VLA
\checkmark	Date	1983
\checkmark	Frequency	5.0 GHz

✓ Distance "hot spots" > 3 Mal (↑ dist. M31)

NRAO/AUI

Milky Way in the optical and radio (408 MHz)


Radiation mediation methods

✓ On/off-source

The source is measured for a few minutes and then the antenna is pointed at a site sky (cold) during the same period of time, where the source will pass again.

Transit

The telescope is targeted to the area where the source will carry over (2 hours prior to measuring the background radiation).

Scientific importance of radio observing

- Cosmic microwave background radiation (Penzias and Wilson, 1963)
- ✓ Spiral structure of the Milky Way and rotation curve (note the letter of 21 cm of hydrogen)
- ✓ Discovery of new objects: Pulsars (Antony Hewish, 1974) and Quasars
- ✓ Observation of molecular clouds and star formation zones

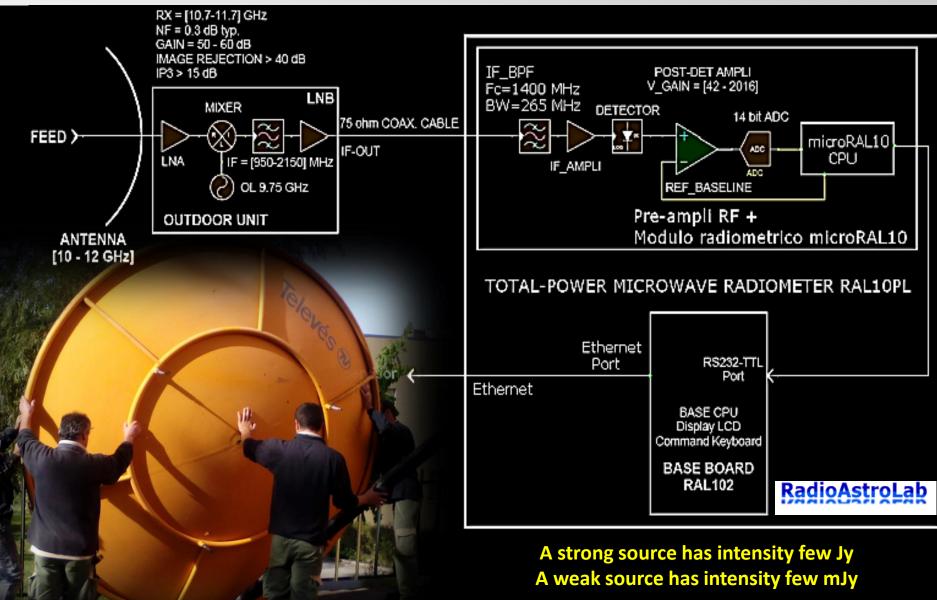
Resolution comparison

Telescope Effelsberg radio (D = 100 m) Telescope in optical (D = 1 m)

$$\alpha=\frac{1,22\ \lambda}{D}$$

 $\lambda_{optical} \approx 600 \text{ nm}$ $\lambda_{radio} \approx 6 \text{ mm}$

The resolving power of an optical telescope in (1 m diameter) is about 100 times higher than that achieved with one of the largest steerable radio telescopes.


 α_{radio}

How to increase the resolving power? Interferometry.

MPIfR (Norbert Junkes)

 $\alpha_{optical}$

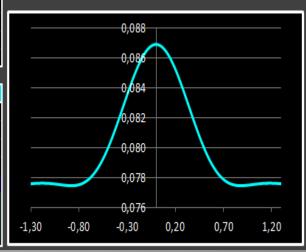
Scheme ART

ARA - ART Project

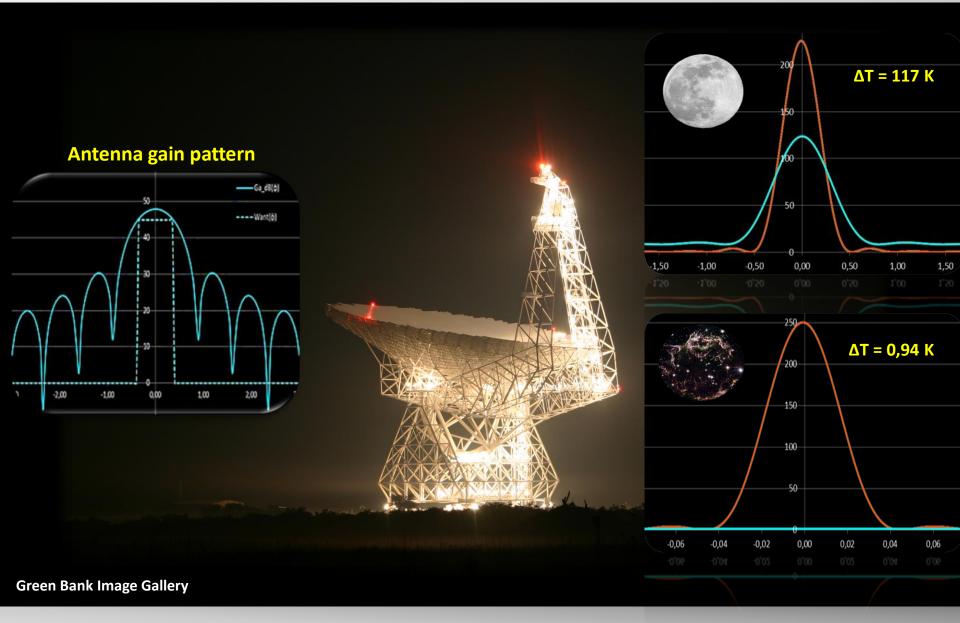
Why 11,2 GHz?

- ✓ Low cost of material (wide availability of material for satellite TV)
- Acceptable resolving power
- ✓ Minimum level of sky noise
- \checkmark Strong immunity to artificial noise (can be used in urban areas)
- Radio astronomical sources in this frequency are not numerous or powerful, which means that small satellite dishes (up to 1.5 m) allow only observe the Sun (thermal component) and the moon, and
 - Geostationary satellites can be a source of artificial noise.

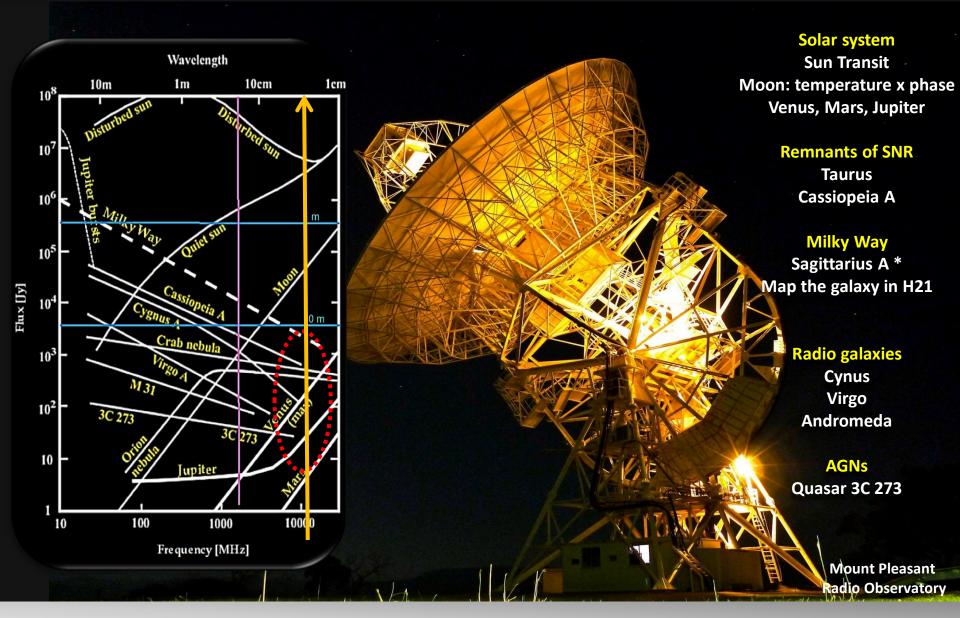
Andrew Clegg/National Science Foundation

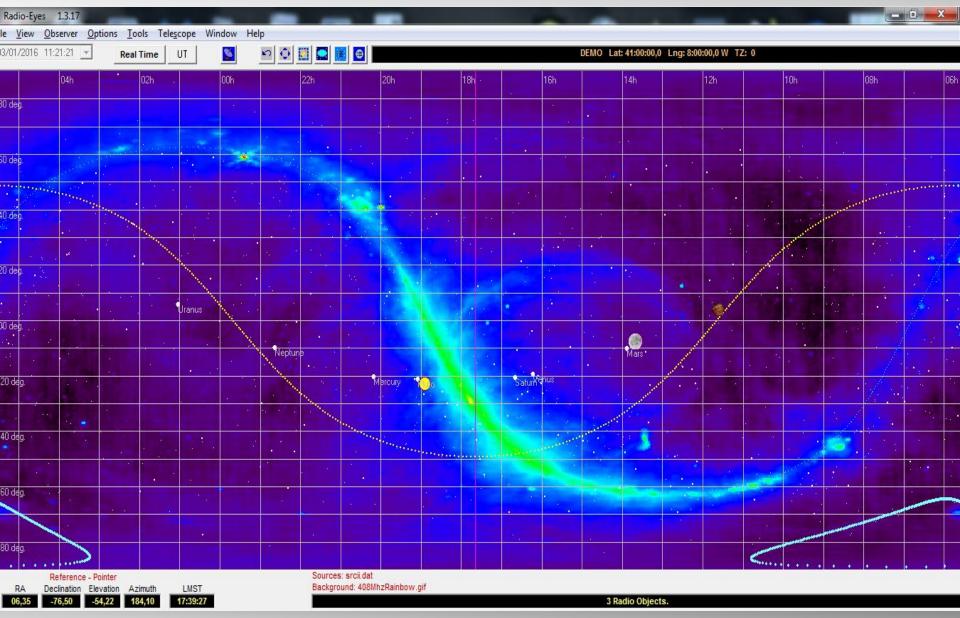

ART's cokpit (Mars detection in opposition)

Global definitions			Parameter
Frequency (f)	11.200	MHz	Fictitious a
Wavelenght (λ)	2,677	cm	Apparent a
Diameter of the aperture (D)	3,00	m	Solid angle
Antenna aperture efficiency (ŋ)	0,50		RT's accept
Antenna depth (d) / Focal lenght (z)	30	m (z = 1,88 m)	Real flow of
Analysys parabolic reflector antenna with circula	r symmtery		Brightness
Antenna gain (Ga_max)	61.988	times	Empirically
Antenna gain (Ga_max_dB)	47,9	dB	
Effective diameter of the antenna (Deff)	2,12	m (Aeff=3,534 m2)	Flux correc
Theoretical Beamwidth - HPBW (O) = ~0,7439°	0,744	° = 44,64 arcmin	Measured
Theoretical Beamwidth (max) - HPBW (λ /D)	0,624	° = 37,42 arcmin	Source mea
Diameter of the full covered area (BWFN)	1,49	° (+3dB HPBW)	Atmospher
Geometric area of the dish (A)	7,07	m2	Elevation
Primus focus [0,32 - 0,43]	1,1	m	Zenith opa
Receiver parameters			Elevation t
GLNB	55	dB	Flux densit
Line amplifier gain + GIF	0	dB	
Losses coaxial cable and connectors	1	dB	Antenna te
Total gain (G)	54,0	dB	BT of the co
Total gain (G)	251.189	times	BT of the at
LNB noise (Fr_dB)	0,4	dB	BT of the a
Noise temperatura of the receiver (Tr)	28,9	k	Noise of th
Integration time (τ)	0,1	' (RMS10%=3,8 ')	Azimuthal
Bandwidth of the receiver (BW)	250	MHz	Sky temp.:
Impedance F connector for RF-IF input (R)	75	ohm	Antenna ter
Voltage input to the doide detector	1,37	mV (ΔdBm= ,)	System tem


Parameters of the observed radio source		
Fictitious angular diameter - non thermal	2,81	arcmin
Apparent angular diameter	0,30	arcmin
Solid angle subtented by the source (Ωr)	5,98E-09	rad^2
RT's acceptance (Ω)	5,30E-04	rad^2
Real flow of the radio source (Sv)	5,1	Jy
Brightness temperature (∆T)	221	k
Empirically adjustment (A)	3,59654	
Flux correction		
Measured temperature	210	k
Source measured flux	4,8	Jy
Atmospheric opacity (τΑ)	0,05	
Elevation angle of the antenna (φ)	70,0	
Zenith opacity estimate (τΖ)	0,05	
Elevation to predict	85,0	0
Flux density estimate	4,9	Jy (T = 211 k)
Antenna temperature		
BT of the cosmic µwave background (Tcmb)	2,8	k
BT of the atmosphere with attenuation (Tatm)		
BT of the atmosphere (Tatm)	3,6	k
Noise of the ground (Tgnd)	4,6	k (φ=1,498°)
Azimuthal distribution of BT of the RS \rightarrow Ts(ϕ)	221,4	k (φ=0,000°)
Sky temp.: T(0) I T(out) I Δ=221,4 k	232,4	k (T = 11,0 k)
Antenna temp.: Ta(0) I Ta(out) I ∆=0,009 k	0,087	k (T = 0,077 k)
System temp.: Tsys(0) Tsys(out) ∆=0,009 k	29,0	k (T = 29,0 k)

Sensitivity of the receiver	
Minimum measurable change (Δt_min)	0,0058 k
Min. detectable source flux density (ΔS_min)	4,533 Jy
Coefficient of performance degradation (ξ)	5
Detection signal variation	0,000 k


Drifting versus HPBW		
Source drift time (BWFN)	1110	
Source transit angle (BWFN)	4,63	0
Source drift angle from equator	#NÚM!	0
Source declination (δ)	22,0	
Max. time drift (HPBW)	161,4	'' = 3 '
нрвw	4,288	0


Theoretical models

Scope of observations

Software: Radio-Eyes

Can we communicate with iET?

- The next region of the spectrum of 1420 MHz (21 cm), radio broadcasts have very low noise levels and absorption by the interstellar medium is minimal.
- Hydrogen being one of the fundamental building blocks of the universe, one o'clock ET civilization will also possess this knowledge.
- Civilizations ET distance of 150 al equipped with RT 300 meters similar to Arecibo, can transmit radio signals detectable on Earth.
- Terrestrial antennas 10 meters can reach ~ 21,500 stars (600 s).
- Terrestrial antennas 3 meters have an average range of 5 star ...

Global definitions		
Frequency (f)		
Wavelenght (λ)	1.420	MHz
Diameter of the aperture (D)	21,11	
Antenna aperture efficiency (ŋ)	10,00	
	0,75	
Integration time (t)	600,0	
Bandwidth of the receiver (BW)	256	MHz
SETI		
ETI transmitter power (P)	10.000.000	
Diameter of the aperture antenna ETI	300	
Distance from Earth (R)	46,8	pc
Stars in our range	21.479	
	21 479	

Intelligent extraterrestrial life

Radio Telescope & Milky Way by Seth McCubbin

Establishing contact ...

A few imitation gestures

DNA Hybridization ~ 1%

Also my 3 year old son ... I do mental calculations of astrophysics

DNA Hybridization ~ 1%

Also my 3 year old son ...

Communicational interest?

Questions we would like to make a iET?

Communicational interest?

- 1. Is there any creator of the universe? Big Bang?
- 2. What is the universe made? Dark matter? Dark Energy?
- 3. What is the purpose of the universe? Real? Simulation?
- 4. Are we alone in the Galaxy?

The End

